Name of the Faculty : RAJIV SANDHU

Discipline : Electrical Engineering

Semester : 3<sup>rd</sup> Semester

Subject : FUNDAMENTALS OF ELECTRICAL ENGINEERING

| Week | Theory         |                                                                                                                                        | Practical        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|----------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Lecture<br>Day | Topic (including assignment / test)                                                                                                    | Practical<br>Day | Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | 1              | Application and Advantages of Electrical Energy *Different forms of energy *Advantages of electrical energy *Uses of electrical energy | 1                | To verify that $R_t = R_1 + R_2 +$ Rnwhere $R_1$ , $R_2$ Rnetc. are resistances connected in series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 2              | Basic concept of charge, current, voltage                                                                                              | 2                | To verify 1 1 1 1 1 1 $=$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ |
|      | 3              | Resistance, power, energy and their units                                                                                              | 3                | Verification of Kirchhoff's current and voltage laws applied to DC circuits  a) to construct a circuit arrangement consisting of resistances in series, parallel combination  b) identification of node points in the circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 4              | Conversion of units of work, power and energy from one form to another                                                                 | 4,5              | *to see that algebraic sum of currents at node point is zero *to see that algebraic sum of emfs and voltage drops in a closed loop is zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 5              | Ohm's law, resistances in series and parallel                                                                                          | 6                | To construct an RL and RC circuit and to measure  a) their impedance b) phase angle between voltage and current c) construct impedance triangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 6              | Kirchhoff's laws and their applications in solving electrical network problems                                                         | 7                | Measurement of power and power factor of a single phase RLC circuit. To calculate kVA and kVAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 7              | Network theorems such as Thevenin's theorem, superposition theorem Maximum power transfer theorem and Norton's theorem                 | 8                | Testing a battery for its charged condition and to charge it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 8              | Star-delta transformation                                                                                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 9      | Resignides about primary and                       |
|--------|----------------------------------------------------|
| 9      | Basic idea about primary and secondary cells       |
| 10 to  |                                                    |
| 10 10  | Working principle,                                 |
| 12     | construction and applications                      |
|        | of Lead acid, Nickel                               |
|        | Cadmium and Silver Oxide                           |
| 40     | Cells                                              |
| 13     | Charging methods used for lead acid accumulator    |
| 14     | Care and maintenance of a                          |
| 14     |                                                    |
| 15     | lead acid battery  Crowning of calls in carios and |
| 15     | Grouping of cells in series and                    |
|        | parallel (simple numerical problems)               |
| 16     | Introduction to                                    |
| 10     | electromagnetism                                   |
| 17     |                                                    |
| ' '    | Magnetic field around a straight current           |
| 18     | <u>e</u>                                           |
| 10     | Carrying conductor and a solenoid                  |
| 19, 20 | Methods to find its direction,                     |
| 19, 20 | , l                                                |
|        | force between two parallel                         |
| 21     | current carrying conductors.                       |
| 21     | Force on a conductor placed in the magnetic field  |
| 22     |                                                    |
| 22     | Series magnetic circuits, simple problems          |
| 23     | Concept of hysteresis, loop                        |
| 20     | and hysteresis loss                                |
| 24     | Faraday's Laws of                                  |
|        | electromagnetic induction                          |
| 25     | Lenz's law,                                        |
| 20     | Fleming's Right and Left                           |
|        | Hand Rule                                          |
| 26     | Principle of self and mutual                       |
| 20     | induction,                                         |
|        | Principle of self and mutually                     |
|        | induced e.m.f. and simple                          |
|        | problems                                           |
| 27     | Inductances in series and                          |
|        | parallel,                                          |
|        | Energy stored in a magnetic                        |
|        | field                                              |
| 28     | Concept of eddy currents                           |
| 29     | Eddy current loss                                  |
| 30     | Concept of A.C. generation                         |
|        | (single phase and three phase)                     |
| 31     | Difference between A.C and                         |
|        | D.C                                                |
| 32     | Alternating current and                            |
| <br>1  |                                                    |

|        | voltage, equation                              |
|--------|------------------------------------------------|
| 33     | R.M.S value, form factor,                      |
|        | power factor etc                               |
| 34     | Concept of phase and phase                     |
|        | difference                                     |
| 35     | Representation of alternating                  |
|        | sinusoidal quantities by                       |
|        | vectors                                        |
| 36     | AC through pure resistance,                    |
|        | inductance and capacitance                     |
| 37, 38 | Alternating voltage applied to                 |
|        | RL,RC and RLC series and                       |
|        | parallel circuits (impedance                   |
|        | triangle, phasor diagram and                   |
|        | their solutions)                               |
| 39     | Introduction to susceptance,                   |
|        | conductance and admittance                     |
| 40     | Power in pure resistance,                      |
|        | inductance, capacitance, RL,                   |
|        | RC, RLC circuits                               |
| 41     | Active and reactive                            |
|        | components of current and                      |
|        | their significance                             |
| 42     | Power factor and its practical                 |
|        | significance                                   |
| 43     | Advantages of 3Ø over 1-Ø                      |
| 4.4    | system                                         |
| 44     | Star & delta connections                       |
|        | (derive relationship b/w phase                 |
| 45     | Voltage(Vph)                                   |
| 45     | Line Voltage (VL) and                          |
|        | Phase Current (Iph) Line                       |
|        | Current (I L) in star delta                    |
| 46     | connections                                    |
| 46     | 3-phase balanced and                           |
| 47     | unbalanced circuits  Deven in 2 phase singuits |
| 47     | Power in 3-phase circuits                      |

Name of the Faculty : Ms. Ruby

Discipline : Electrical Engineering

Semester : 3<sup>rd</sup> Semester

Subject : ELECTRICAL AND ELECTRONICS ENGINEERING MATERIALS

| Week | Theory         |                                                                                                                   | Practical        |       |  |
|------|----------------|-------------------------------------------------------------------------------------------------------------------|------------------|-------|--|
|      | Lecture<br>Day | Topic (including assignment / test)                                                                               | Practical<br>Day | Topic |  |
|      | 1              | Classification of materials into conducting                                                                       |                  |       |  |
|      | 2              | Semi conducting                                                                                                   |                  |       |  |
|      | 3              | Insulating materials through a brief reference to their atomic structure and energy bands                         |                  |       |  |
|      | 4              | Introduction and Resistance and factors affecting it                                                              |                  |       |  |
|      | 5              | Classification of conducting material as low resistivity and high resistivity materials, low resistance materials |                  |       |  |
|      | 6              | Copper                                                                                                            |                  |       |  |
|      | 7              | General properties as conductor:<br>Resistivity                                                                   |                  |       |  |
|      | 8              | Aluminium, General properties as conductor                                                                        |                  |       |  |
|      | 9              | Mechanical properties of hard and annealed aluminium                                                              |                  |       |  |
|      | 10             | Solderability, contact resistance                                                                                 |                  |       |  |
|      | 11             | Applications in the field of electrical engineering.                                                              |                  |       |  |
|      | 12             | Steel: Mechanical properties of steel                                                                             |                  |       |  |
|      | 13             | Applications in the field of electrical engineering.                                                              |                  |       |  |
|      | 14             | Introduction to bundle conductors and its applications                                                            |                  |       |  |
|      | 15             | Low resistivity copper alloys                                                                                     |                  |       |  |
|      | 16             | Brass, Bronze (cadmium and Beryllium), their practical applications with reasons for the same                     |                  |       |  |
|      | 17             | Applications of special metals e.g. Silver                                                                        |                  |       |  |
|      | 18             | Applications of special metals e.g. Gold, Platinum etc                                                            |                  |       |  |
|      | 19             | High resistivity materials                                                                                        |                  |       |  |
|      | 20             | Manganin, constantan                                                                                              |                  |       |  |

| 21  | Nichrome, mercury                                                    |  |
|-----|----------------------------------------------------------------------|--|
| 22  | Platinum, carbon and tungsten                                        |  |
| 23  | Semi-conductors and their properties                                 |  |
| 24  | Resistors, capacitors, diodes,                                       |  |
|     | transistors and inductors                                            |  |
| 25  | Electrical Properties:Volume                                         |  |
|     | resistivity, surface resistance                                      |  |
| 26  | Dielectric loss, dielectric strength                                 |  |
|     | (breakdown voltage) dielectric                                       |  |
|     | constant                                                             |  |
| 27  | Physical Properties:                                                 |  |
|     | Hygroscopicity, tensile and                                          |  |
|     | compressive strength                                                 |  |
| 28  | Abrasive resistance, brittleness                                     |  |
| 29  | Thermal Properties: Heat resistance,                                 |  |
|     | classification according to permissible                              |  |
|     | temperature rise                                                     |  |
| 30  | Effect of overloading on the life of an                              |  |
| 0.4 | electrical appliance                                                 |  |
| 31  | Thermal conductivity                                                 |  |
| 32  | Electro-thermal breakdown in solid dielectrics                       |  |
| 33  |                                                                      |  |
| 33  | Chemical Properties: Solubility, chemical resistance, weatherability |  |
| 34  | Mechanical properties, mechanical                                    |  |
|     | structure, tensile structure                                         |  |
| 35  | Definition and classification                                        |  |
|     | Thermosetting materials                                              |  |
| 36  | Phenol-formaldehyde resins (i.e.                                     |  |
|     | Bakelite) amino resins (urea                                         |  |
|     | formaldehyde and Melamine-                                           |  |
|     | formaldehyde)                                                        |  |
| 37  | Thermo-plastic materials:                                            |  |
|     | Polyvinyl chloride (PVC),                                            |  |
|     | polyethelene, silicones, their                                       |  |
|     | important properties and applications                                |  |
| 38  | Natural insulating materials,                                        |  |
|     | properties and their applications                                    |  |
|     | Mica and Mica products,                                              |  |
|     | Asbestos and asbestos products                                       |  |
|     | Ceramic materials (porcelain and                                     |  |
| 00  | steatite)                                                            |  |
| 39  | Glass and glass products,                                            |  |
|     | Cotton                                                               |  |
|     | Silk                                                                 |  |
| 40  | Jute  Paper (dry and impregnated)                                    |  |
| 40  | Paper (dry and impregnated)                                          |  |
|     | Rubber, Bitumen Mineral and insulating oil for                       |  |
|     | transformers switchgear capacitors,                                  |  |
|     | transformers switchgear capacitors,                                  |  |

|    | high voltage insulated cables,                                                         |
|----|----------------------------------------------------------------------------------------|
|    | insulating varnishes for coating                                                       |
|    | and impregnation                                                                       |
| 41 | Enamels for winding wires,                                                             |
|    | Glass fibre sleeves                                                                    |
| 42 | Gaseous materials; Air, Hydrogen,                                                      |
|    | Nitrogen, SF their properties and                                                      |
|    | applications                                                                           |
| 43 | Introduction - ferromagnetic                                                           |
|    | materials, permeability                                                                |
| 44 | Hysteresis loop including coercive                                                     |
|    | force and residual magnetism, concept                                                  |
|    | of eddy current and hysteresis loss                                                    |
| 45 | Curie temperature, magnetostriction                                                    |
|    | effect.                                                                                |
| 46 | Alloyed steels with silicon: High                                                      |
|    | silicon                                                                                |
| 47 | Alloy steel for transformers                                                           |
| 48 | Electric rotating machines                                                             |
| 49 | Cold rolled grain oriented steels for                                                  |
|    | transformer                                                                            |
| 50 | Non-oriented steels for rotating                                                       |
|    | machine                                                                                |
| 51 | Nickel-iron alloys, Soft Ferrites                                                      |
| 52 | Hard magnetic materials                                                                |
|    | Tungsten steel, chrome steel                                                           |
| 53 | Hard ferrites and cobalt steel, their                                                  |
|    | applications                                                                           |
| 54 | Special Materials                                                                      |
|    | Thermocouple, bimetals                                                                 |
| 55 | Leads soldering and fuses material                                                     |
| 56 | Fuses material and their applications                                                  |
| 57 | Introduction of various engineering                                                    |
|    | materials necessary for fabrication of                                                 |
|    | electrical machines                                                                    |
| 58 | Motors, generators, transformers etc                                                   |
|    | 43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57 |

Name of the Faculty : Mr. Manoj

Discipline : Electrical Engineering

Semester : 3<sup>rd</sup>Semester

Subject : ELECTRONICS - II

| Week | Theory         |                                                                                                 | Practical        |                                                                                                                                                                           |
|------|----------------|-------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Lecture<br>Day | Topic (including assignment / test)                                                             | Practical<br>Day | Topic                                                                                                                                                                     |
|      | 1              | Difference between voltage and power amplifier                                                  | 1                | To study the effect of coupling capacitor on lower cut off frequency and upper cut off frequency by plotting frequency response curve of a two stage RC coupled amplifier |
|      | 2, 3           | Important terms in Power Amplifier, collector efficiency, distortion and dissipation capability | 2                | To measure (a) optimum load (b) output power (c) signal handling capacity of a push-pull amplifier                                                                        |
|      | 4, 5, 6        | Classification of power amplifier class A, B and C                                              | 3                | To observe the effect of negative current feedback on the voltage gain of a single stage transistor amplifier by removing emitter bye-pass capacitor                      |
|      | 7              | Class A single-ended power amplifier, its working and collector efficiency                      | 4                | To measure (a) voltage gain (b) input and output impedance for an emitter follower circuit                                                                                |
|      | 8              | Impedance matching in a power amplifier using transformer                                       | 5                | To measure frequency generation in Hartley                                                                                                                                |
|      | 9              | Heat sinks in power amplifiers                                                                  | 6                | To measure frequency generation in R-C Phase Shift oscillator                                                                                                             |
|      | 10             | Push-pull amplifier: circuit details, working and advantages (no mathematical derivations)      | 7                | To observe the differentiated and integrated square wave on a CRO for different values of R-C time constant                                                               |
|      | 11, 12         | Principles of the working of complementary symmetry push-pull amplifier                         | 8                | Clipping of both portion of sine-wave using : diode and dc source                                                                                                         |
|      | 13             | Tuned Voltage Amplifier - Introduction                                                          | 9                | Clipping of both portion of sine-wave using: zener diodes                                                                                                                 |
|      | 14, 15         | Series and parallel resonance (No mathematical derivation)                                      | 10               | Clamping a sine-wave to : Negative dc voltage                                                                                                                             |
|      | 16, 17         | Single and double tuned voltage amplifiers                                                      | 11               | Clamping a sine-wave to : Positive dc voltage                                                                                                                             |
|      | 18             | Frequency response of tuned voltage amplifiers                                                  | 12               | To generate square-wave using an astablemultivibrator and to observe the wave form on a CRO and verify the result using p-spice software                                  |
|      | 19, 20         | Applications of tuned voltage amplifiers                                                        | 13               | To observe triggering and working of a bistablemultivibrator circuit and                                                                                                  |

|              |                                                                                                                                                         |    | observe its output wave form on a CRO                                                                                                                                   |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21, 22       | Feedback and its importance, positive and negative feedback and their need                                                                              | 14 | To use the op-Amp (IC 741) as inverting one and non-inverting amplifiers, adder, comparator, integrator and differentiator and verify the result using p-spice software |
| 23           | Voltage gain of an amplifier with  A=——  negative feedback 1+βA                                                                                         | 15 | To study the pin configuration and working of IC 555 and its use as monostable and astablemultivibrator                                                                 |
| 24           | Effect of negative feedback on voltage gain, stability, distortion, band width, output and input impedance of an amplifier (No mathematical derivation) | 16 | To realize the regulated power supply by using three terminal voltage regulator ICs such as 7805, 7905, 7915 etc. and verify the result using p-spice software          |
| 25, 26<br>27 | Typical feedback circuits  Effect of removing the emitter by-pass                                                                                       |    |                                                                                                                                                                         |
|              | capacitor on a CE transistor amplifier                                                                                                                  |    |                                                                                                                                                                         |
| 28           | Emitter follower and its applications                                                                                                                   |    |                                                                                                                                                                         |
| 29           | Sinusoidal Oscillators – positive feedback in amplifiers                                                                                                |    |                                                                                                                                                                         |
| 30           | Difference between an oscillator and an alternator                                                                                                      |    |                                                                                                                                                                         |
| 31           | Essentials of an oscillator                                                                                                                             |    |                                                                                                                                                                         |
| 32, 33,      | Circuit details and working of LC                                                                                                                       |    |                                                                                                                                                                         |
| 34           | oscillators viz. Tuned Collector,<br>Hartley and Colpitt's oscillators                                                                                  |    |                                                                                                                                                                         |
| 35           | R-C oscillator circuits                                                                                                                                 |    |                                                                                                                                                                         |
| 36           | phase shift and Wein bridge oscillator circuits                                                                                                         |    |                                                                                                                                                                         |
| 37           | Introduction to piezoelectric crystal and crystal oscillator circuit                                                                                    |    |                                                                                                                                                                         |
| 38, 39       | Concept of Wave-shaping                                                                                                                                 |    |                                                                                                                                                                         |
| 40           | R-C differentiating                                                                                                                                     |    |                                                                                                                                                                         |
| 41           | integrating circuits                                                                                                                                    |    |                                                                                                                                                                         |
| 42, 43       | Diode clipping circuits                                                                                                                                 |    |                                                                                                                                                                         |
| 44, 45       | Diode clamping circuits                                                                                                                                 |    |                                                                                                                                                                         |
| 46           | Applications of wave-shaping circuits                                                                                                                   |    |                                                                                                                                                                         |
| 47           | Transistor as a switch (explanation                                                                                                                     |    |                                                                                                                                                                         |
| 4.0          | using CE transistor characteristics)                                                                                                                    |    |                                                                                                                                                                         |
| 48           | Collector coupled astablemultivibrator                                                                                                                  |    |                                                                                                                                                                         |
| 49           | monostablemultivibrator                                                                                                                                 |    |                                                                                                                                                                         |
| 50           | bistablemonostable                                                                                                                                      |    |                                                                                                                                                                         |
| 51           | Brief mention of uses of multivibrators                                                                                                                 |    |                                                                                                                                                                         |
| 52, 53       | Working and applications of transistor                                                                                                                  |    |                                                                                                                                                                         |
| 54, 55       | inverter circuit using power transistors Working Principles of different types                                                                          |    |                                                                                                                                                                         |
|              | of power supplies                                                                                                                                       |    |                                                                                                                                                                         |
| 56, 57       | CVTs, IC voltage regulator (78                                                                                                                          |    |                                                                                                                                                                         |
|              | XX,79XX)                                                                                                                                                |    |                                                                                                                                                                         |
| 58           | The basic operational amplifier                                                                                                                         |    |                                                                                                                                                                         |
| 59           | The differential amplifier                                                                                                                              |    |                                                                                                                                                                         |
| 60           | The emitter coupled differential                                                                                                                        |    |                                                                                                                                                                         |

| 1  | amplifier                                                           |   |  |  |
|----|---------------------------------------------------------------------|---|--|--|
| 61 | Offset even voltages and currents                                   |   |  |  |
| 62 | Basic operational amplifier                                         |   |  |  |
| 1  | applications, integrator and                                        | 1 |  |  |
| 1  | differentiator, summer, subtractor                                  | 1 |  |  |
| 63 | Familiarization with specifications and pin configuration of IC 741 |   |  |  |
| 64 | Block diagram and operation of 555                                  |   |  |  |
| 1  | IC timer                                                            | 1 |  |  |

Name of the Faculty : Ms. Ruby

Discipline : Electrical Engineering

Semester : 3<sup>rd</sup> Semester

Subject : ESTIMATING AND COSTING IN ELECTRICAL ENGINEERING

| Week | Theory  |                                                                                 | Practical |       |  |
|------|---------|---------------------------------------------------------------------------------|-----------|-------|--|
|      | Lecture | Topic (including assignment / test)                                             | Practical | Topic |  |
|      | Day     |                                                                                 | Day       |       |  |
|      | 1,2     | Introduction Purpose of estimating                                              |           |       |  |
|      |         | and costing, proforma for making                                                |           |       |  |
|      |         | estimates, preparation of materials                                             |           |       |  |
|      |         | schedule, costing, price list                                                   |           |       |  |
|      | 3,4,5   | Preparation of tender document (with                                            |           |       |  |
|      |         | 2-3 exercises), net price list, market                                          |           |       |  |
|      |         | survey, overhead charges, labour                                                |           |       |  |
|      |         | charges, electrical point method and fixed percentage method                    |           |       |  |
|      | 6,7     | Contingency, profit, purchase system,                                           |           |       |  |
|      | 0,1     | enquiries, comparative statements,                                              |           |       |  |
|      |         | orders for supply, payment of bills.                                            |           |       |  |
|      | 8,9     | Cleat, batten, casing capping and                                               |           |       |  |
|      |         | conduit wiring, comparison of different                                         |           |       |  |
|      |         | wiring systems                                                                  |           |       |  |
|      | 9,10    | Selection and design of wiring schemes                                          |           |       |  |
|      |         | for particular situation (domestic and                                          |           |       |  |
|      |         | Industrial)                                                                     |           |       |  |
|      | 11 to   | Selection of wires and cables, wiring                                           |           |       |  |
|      | 13      | accessories and use of protective                                               |           |       |  |
|      |         | devices i.e. MCB, ELCB etc. Use of                                              |           |       |  |
|      |         | wire-gauge and tables ( to be prepared/arranged)                                |           |       |  |
|      | 14 to   | Domestic installations; standard                                                |           |       |  |
|      | 21      | practice as per IS and IE rules.                                                |           |       |  |
|      | _ '     | Planning of circuits, sub-circuits and                                          |           |       |  |
|      |         | position of different accessories,                                              |           |       |  |
|      |         | electrical layout, preparing estimates                                          |           |       |  |
|      |         | including cost as per schedule rate                                             |           |       |  |
|      |         | pattern and actual market rate (single                                          |           |       |  |
|      |         | storey and multi-storey buildings                                               |           |       |  |
|      |         | having similar electrical load)                                                 |           |       |  |
|      | 22 to   | Industrial installations; relevant IE                                           |           |       |  |
|      | 28      | rules and IS standard practices,                                                |           |       |  |
|      |         | planning, designing and estimation of                                           |           |       |  |
|      |         | installation for single phase motors of                                         |           |       |  |
|      |         | different ratings, electrical circuit diagram, starters, preparation of list of |           |       |  |
|      |         | materials, estimating and costing                                               |           |       |  |
|      |         | exercises on workshop with singe-                                               |           |       |  |
|      | 1       | - character and manage                                                          |           |       |  |

|             | T                                                                                                                                                                                                       |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             | phase, 3-phase motor load and the light load (3-phase supply system)                                                                                                                                    |  |
| 29 to<br>31 | Service line connections estimate for domestic and industrial loads (overhead and under ground connections) from pole to energy meter.                                                                  |  |
| 32 to<br>37 | Transmission and distribution lines (overhead and underground) planning and designing of lines with different fixtures, earthing etc. based on unit cost calculations                                   |  |
| 38 to<br>45 | Substation: Types of substations, substation schemes and components, estimate of 11/0.4 kV pole mounted substation up to 200 kVA rating, earthing of substations, Key Diagram of 66 kV/11 kV Substation |  |
| 46 to<br>47 | Single line diagram, layout sketching of outdoor, indoor 11kV sub-station or 33kV sub-station                                                                                                           |  |
| 48 to<br>59 | At least 2-3 exercises, tender – constituents finalization, specimen tender                                                                                                                             |  |